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Abstract
In metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic 
algorithm in achieving two main goals—converging its solutions towards the Pareto front and ensuring these solutions are 
well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than 
three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting 
adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, 
especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an 
innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates 
reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A 
comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, 
focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged 
that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach 
effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark 
problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, 
MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior 
performance against these algorithms.

Keywords Many-objective optimization · Grasshopper optimization algorithm · Reference point strategies · Information 
feedback mechanism · Diversity maintenance

1 Introduction

Numerous practical scenarios are categorized as many-
objective optimization problems (MaOPs), encompassing 
areas like engineering design, drone routing and large-scale 
issues [1–3]. This study investigates a specific MaOP,

where � ⊆ ℝ
n identifying the decision space as the realm 

of x = (x1, x2,… , xn)
T  potential solutions. The objective 

space f ∶ � → ℝ
m is defined by multiple m ≥ 4 objectives, 

each requiring minimization. The Pareto Optimal Set (PS) 
is characterized as the decision-making domain formed by 

the aggregation of Pareto optimal solutions. In the realm 
of objective space, this set representation is known as 
the Pareto Optimal Front (PF). The primary objective in 
addressing a Multi-Objective Problem (MaOP) lies in pin-
pointing the PS shown in Fig. 1.

Approaches such as many-objective evolutionary algo-
rithms (MaOEAs) [4] have been widely acknowledged 
in literature [5]. These population-driven methodologies 
strive to derive a suite of optimal solutions, which effec-
tively converge and exhibit diversity [6] on the true Pareto 
front (PF) associated with MaOPs. Recent decades have seen 
the emergence of numerous MaOEAs, tailored for MaOPs 
[7] and demonstrating their effectiveness [8]. Despite 
their successes, the performance of MaOEAs, particularly 
those based on Pareto principles [9], in high-dimensional 
scenarios warrants further examination. A key challenge 
[10] in such contexts is the comparability of solutions; in 

(1)
min f (x) = (f1(x), f2(x),… , fm(x))

T ⊆ ℝ
ms.t. x ∈ � ⊆ ℝ

n
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high-dimensional spaces, the proportion of nondominated 
solutions escalates. This issue is exacerbated as the num-
ber of objectives increases, leading to diminished selection 
pressure [11]. A secondary challenge is the preservation of 
population diversity [12]. Traditional methods for diver-
sity maintenance [13], like the k th nearest distance [14], 
crowding distance [15] etc. are not suitable for vast objective 
spaces. In order to overcome these challenges, a number of 
algorithms have been proposed and these can be classified 
into three main categories:

1) Pareto dominance-based strategies: Pareto dominance-
based strategies redefine classical Pareto dominance as a 
way to better compare solutions. Methods such as fuzzy 
dominance [16], ϵ-dominance [17] and θ-dominance 
[18] utilize these advanced techniques for picking the 
solutions. For instance, Tian et al. [19] proposed a new 
dominance relation that combines convergence and 
diversity based on adaptive approaches. Also, Qiu et al. 
[20] introduced fractional dominance which makes the 
convergence faster by comparing the objective values of 
two solutions. Furthermore, a new method integrating 
classical dominance with convergence-based approach 
has been proposed and Zhang et al. [21] proposed the 
KnEA to improve convergence speed.

2) Indicator-based MaOEAs: Indicator-based MaOEAs 
employ certain metrics to assess the nondomination 
of solutions and steer the search procedure. Some of 
the commonly used metrics in this category are R2 
indicator [22], S-metric [23], I� indicator [24] and the 
hypervolume (HV) indicator [25]. HV-based MaOEAs 
[26–28] estimate the solutions by their contributions 
to the HV value and this flexibility allows the use of 
indicators within the IBEA framework [24].

3) Decomposition-based methods: Decomposition-based 
methods simplify complex multi-objective optimization 
problems (MaOPs) into subproblems [29] or a series of 
single-objective problems (SOPs) [30]. Algorithms such 
as MOEA/D [30], RVEA [31], Many-Objective Particle 
Swarm Optimizer (MaOPSO) [32], Many-Objective Sine 
Cosine Algorithm (MaOSCA) [33] and Non-Dominated 
Sorting Genetic Algorithm-III (NSGA-III) [13] are 
prominent in this area. MOEA/D optimizes each sub-
problem with data from adjacent subproblems to mini-
mize computational complexity. NSGA-III uses a set of 
reference points to partition the objective space, enhanc-
ing diversity. From these principles, various environmen-
tal selection strategies have emerged, such as integrating 
dominance with decomposition methods (MOEA/DD) 
by Li et al. [34] and utilizing perpendicular distances 

Fig. 1  Many-objective all 
definitions in search space of 
MaO-Problem
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from solutions to reference vectors by Yuan et al. [35]. 
Innovations such as adaptive weight adjustments during 
the evolutionary process [36], learning the distribution 
of reference vectors via a growing neural gas (GNG) 
network [37] and generating reference vectors through 
a modified k-means clustering technique [38].

Additionally, many MaOEAs do not align strictly with 
the above categories, such as the determinantal point pro-
cess-based algorithm [39], adaptive clustering-based algo-
rithm [40] and the two-archive algorithm [41, 42], which 
maintains separate archives for convergence and diversity. 
Other notable methods are the dimension reduction and 
knowledge-guided solving algorithm [43], the voting-
based algorithm [44], the two-stage algorithm [45] and the 
decision variable classification-based algorithm [46]. Ding 
et al. [44] introduced a multi-stage evolutionary strategy 
that uses knowledge fusion and a statistical guidance vector 
to identify concentrations of elite solutions through a voting 
method. Li et al. [45] structured objective optimization into 
two phases: a convergence stage where individuals compete 
and a diversity stage that focuses on selecting well-spaced 
solutions. Liu et al. [46] developed a novel decision variable 
classification method, increasing the likelihood of generat-
ing offspring with superior convergence and diversity.

Although there are numerous studies on MaOEAs, more 
work is required to address the issue of balance in terms of 
convergence [47] and diversity [48], particularly in high-
dimensional problems [49]. There are other methods that 
have been proposed to address the issue of diversity in 
many-objective optimization such as the Grid-based Evo-
lutionary Algorithm (GrEA) [50]. GrEA, therefore, effec-
tively controls population diversity without using explicit 
density estimation through dividing the search space into 
a grid structure. Bi-goal Evolution (BiGE) [51] is another 
approach that focuses on two goals only, thus making the 
optimization process easier but without losing the ability 
to explore and exploit the search space effectively. Shift-
based Density Estimation (SDE) [52] is another interest-
ing approach to density estimation that shifts according 
to the distribution of solutions to guarantee the mainte-
nance of solution diversity in high-dimensional objective 
space. These algorithms must not only retain variation in 
the population but also must have high selection pressure 
towards actual PFs.

This research paper is motivated by the need for effective 
approaches that can handle the intricacies of many-objective 
problems particularly, the challenges related to convergence 
to the Pareto front and maintaining solution diversity across 
it. Current strategies either fail to adequately converge or 
cannot ensure a well-spread set of solutions, especially when 
dealing with irregular Pareto fronts. This leads to suboptimal 
decision-making in practical applications. To address these 

gaps, the MaOGOA is proposed, an innovative approach that 
integrates Grasshopper Optimisation Algorithm (GOA) [53], 
reference point strategies, niche preservation and an IFM. It 
is specifically designed to improve both the convergence and 
diversity of solutions in many-objective problems.

This paper primary contributions are 

• The selection of GOA algorithm due to its distinct 
characteristics that are particularly suited to addressing 
the challenges of MaOPs. The key reasons for this choice 
are

• GOA simulates the swarming behaviors of grasshoppers, 
which is a natural phenomenon noted for its efficiency in 
exploring and exploiting spatial resources.

• The algorithm’s ability to dynamically balance between 
the different phases of search driven by its inherent 
components of social interaction, gravitational forces 
and wind advection.

• It is shown that GOA is highly scalable and flexible, 
which are essential when addressing the fact that the 
objective space can be quite diverse in many-objective 
problems. Some of these are the degree of attraction or 
repulsion amongst the individuals which can be adjusted 
depending on the problem at hand to ensure that there is a 
reasonable spread of the population and yet getting close 
to the Pareto front.

• Many-objective optimization problems have Pareto 
fronts that are complex and can be non-contiguous. 
GOA model, which is based on the differential movement 
of agents (grasshoppers), is best suited to tackle such 
scenarios. It can search for a larger set of regions in the 
search space and thus, identify more potential Pareto-
optimal solutions.

• This paper offers an IFM approach to overcome previous 
shortcomings that are related to the non-consideration 
of valuable information. In the IFM, the decision-
making process is made using the weighted sum method 
to promote the historical information of the whole 
population to the next generation in order to increase the 
convergence.

• The selection process is based on the reference point 
approach, which makes it possible to reach not just 
the true Pareto frontier and its closest solutions 
(convergence), but also to distribute solutions across 
the entire Pareto diagram (diversity). This is done by 
assigning each solution to the nearest reference point 
with the help of perpendicular distance measurement 
which helps in identifying the well explored region of 
the objective space. An NSGA-II algorithm uses non-
dominated sorting which sorts solutions closer to the 
Pareto-optimal front and thus improves convergence.

• A niche preservation strategy specifically targets bound-
ary individuals to enhance diversity and mitigate over-
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crowding in certain areas of the objective space, thus 
improving the overall convergence rate of the algorithm. 
Additionally, a density estimation strategy is detailed to 
maintain diversity, ensuring both uniformity and broad 
coverage in the population distribution.

• The efficacy of the newly developed MaOGOA is 
demonstrated through comparative analysis against 
algorithms such as MaOSCA, MaOPSO, MOEA/DD, 
NSGA-III, KnEA, RvEA and GrEA across the WFG1-
WFG9 benchmark sets with objectives ranging from 5 
to 9, as well as five real-world problems (RWMaOP1- 
RWMaOP5). These experiments highlight MaOGOA 
ability to adeptly handle a variety of problem types and 
its robust performance.

The structure of this paper is organized as follows: 
Sect. 2 offers an overview of GOA algorithm. Section 3 
provides a detailed description of the proposed MaOGOA. 
Experimental results and discussions are presented in 
Sect. 4. Finally, Sect. 5 concludes the paper and outlines 
future research directions.

2  Grasshopper Optimisation Algorithm

The GOA, initially introduced by Saremi et  al. [53], is 
inspired by the swarming patterns of grasshoppers in nature 
and is utilized for addressing optimization challenges. 
Center of Gravity is based on the cohesive social behav-
ior of grasshoppers. This swarming characteristic makes 

them fit naturally for explorative and exploitative tasks in a 
many-dimensional search domain. The GOA mathematical 
model successfully provides an overall representation of this 
balance. The social interaction, gravitational pull and wind 
advection in the model enable the specific elements of the 
algorithm to change their search behavior in an appropri-
ate manner. This algorithm represents potential solutions to 
optimization problems through the positions of grasshoppers 
within a swarm. Grasshoppers exhibit a distinctive flight 
pattern, which is mathematically modeled in GOA shown 
in Fig. 2. This model suggests that grasshopper movement 
is predominantly influenced by three components—social 
interaction, gravitational pull and wind advection.

The position of each grasshopper, labeled as Xi , is 
expressed as

where Si signifies social interaction, Gi denotes gravitational 
force and Ai represents wind advection. The pivotal element 
in this model is social interaction which is calculated as

(2)Xi = Si + Gi + Ai,

(3)
Si =

N∑

j = 1

j ≠ i

s
(
dij
)
d̂ij,

(4)dij =
|||xj − xi

|||,

Fig. 2  Basic interaction patterns 
among individual grasshoppers 
within a group
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In these equations, dij represents the distance between 
the i th and j th grasshopperand d̂ij a unit vector directs from 
the i th and j th grasshopper. The social force, defined by 
the s function, is modifiable through parameters f  and l . It 
important to note that the s function social forces diminish 
with increasing distances between grasshoppers. For effec-
tive interaction, grasshopper distances are mapped within 
the range of [1, 4]. Gravitational influence on a grasshopper 
is described as,

In this context, g stands for the gravitational constant and êg 
a unit vector points towards Earth center. The wind advection 
effect on grasshoppers is given as

where u is a constant drift and êw a unit vector indicates wind 
direction. Consequently, Eq. (2) is elaborated as,

N denotes the total grasshoppers in the swarm. to enhance 
the optimization process, additional parameters are incorpo-
rated into the model, optimizing exploration and exploitation 
phases. The gravitational impact on grasshoppers is relatively 
minor and generally disregarded, while the wind direction (A 
component) is presumed to always orient towards the optimal 
solution T̂d . The final form of the mathematical model is as,

In this equation, ubd and lbd are the upper and lower bounds 
in the d th dimension, respectively. T̂d represents the d th dimen-
sion value in the optimal solution discovered so far. The 
parameter c evolves according to the equation below:

(5)d̂ij =
(
xj − xi

)
∕dij,

(6)s(r) = fe
−

r

l − e−r.

(7)Gi = −gêg.

(8)Ai = uêw,

(9)
Xi =

N∑

j = 1

j ≠ i

s
(|||xj − xi

|||
)xj − xi

dij
− gêg + uêw,

(10)Xd
i
= c

⎛
⎜⎜⎜⎜⎜⎝

N�

j = 1

j ≠ i

c
ubd − lbd

2
s
����x

d
j
− xd

i

���
�xj − xi

dij

⎞
⎟⎟⎟⎟⎟⎠

+ T̂d

(11)c = cmax − l
cmax − cmin

L
,

where cmax and cmin are the maximum and minimum val-
ues, respectively, l is the current iteration and L signifies the 
maximum iteration limit.

3  Proposed Many‑Objective Grasshopper 
Optimization Algorithm

3.1  Overview of MaOGOA

MaOGOA is designed to address the complexities of 
many-objective optimization problems by effectively 
balancing exploration and exploitation, ensuring diversity 
and converging towards the Pareto front. This algorithm 
leverages the natural swarming behaviors of grasshoppers, 
modeled through social interaction, gravitational pull and 
wind advection mechanisms, to navigate the search space 
dynamically.

3.2  Initialization

MaOGOA commences with an initialization phase where a 
random population of size N is established. Each individual 
in this population represents a potential solution within a d
-dimensional decision space, where d stands for the num-
ber of decision variables. The initial population is evalu-
ated based on M objective functions, which define the initial 
objective space.

3.3  Generation of Reference Points

Following initialization, a set of reference points is generated 
using Das and Dennis technique. This technique strategically 
partitions the objective space to enhance the diversity of 
solutions and guide the search towards covering the entire 
Pareto front effectively. The number of reference points is 
approximately equal to the population size N , calculated as 
H = (

M + p − 1

p
) , where p is the number of partitions.

3.4  Grasshopper Optimization Mechanism

Each iteration of MaOGOA involves updating the position of 
each grasshopper (solution) in the search space. The position 
update is influenced by three main components:

• Social Interaction Si : Each grasshopper adjusts its posi-
tion relative to others based on their proximity, promot-
ing local exploration.
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• Gravitational Pull Gi : A collective movement towards 
better solutions, facilitating exploitation.

• Wind Advection Ai : Random perturbations that prevent 
premature convergence and encourage global explora-
tion.

The position update formula for each grasshopper Xi is 
given in Eq. (1).

3.5  Information Feedback Mechanism (IFM)

A novel aspect of MaOGOA is the incorporation of an IFM. 
This mechanism integrates historical performance data 
to adjust the search dynamically. For each grasshopper, a 
weighted combination of its own past position and the best 
positions encountered so far is used to update its position, 
enhancing the algorithm ability to converge on optimal 
solutions while maintaining diversity.

3.6  Environmental Selection and Niche 
Preservation

After updating the positions of grasshoppers, the total 
population, including both parents and offspring, undergoes 
evaluation. The individuals are organized into non-dominated 
fronts and selection is focused on preserving a diverse and 
high-quality solution set. This process are

• Niche Preservation: Ensuring that solutions spread across 
all regions of the objective space, particularly focusing on 
less crowded niches.

• Density Estimation: Evaluating the density around each 
solution to avoid overcrowding and maintain diversity.

The selection process emphasizes maintaining a balance 
between convergence towards the Pareto front and diversity 
across it.

3.7  Algorithm Termination

The MaOGOA algorithm progresses through these stages 
until a specified termination criterion is met, which may be 
a predefined number of generations, a convergence threshold, 
or another problem-specific benchmark. At the end of the 
process, the algorithm delivers a set of diverse, high-quality 
solutions that approximate the Pareto front effectively. The 
main process of MaOGOA can be expressed as follows:

MaOGOA algorithm starts with a random population of 
size N , M no. of objectives, p no. of partitions and generate a 
set of reference points using Das and Dennis technique 

H = (
M + p − 1

p
) , as H ≈ N . the current generation is t, xt

i
 and 

xt+1
i

 the ith individual at t and (t + 1) generation. ut+1
i

 the ith 
individual at the (t + 1) generation generated through the GOA 
algorithm and parent population Pt . the fitness value of ut+1

i
 is 

f t+1
i

 and Ut+1 is the set of ut+1
i

 . Next, xt+1
i

 is computed according 
to ut+1

i
 generated through the GOA algorithm and IFM as per 

Eq. (12)

where xt
k
 is the k th individual we chose from the t th gen-

eration, the fitness value of xt
k
 is f t

k
, �1 and �2 are weight 

coefficients. Generate offspring population Qt . Qt is the set 
of xt+1

i
. The combined population Rt = Pt ∪ Qt is sorted into 

different w-non-dominant levels 
(
F1,F2,… ,Fl … ,Fw

)
 . 

Begin from F1 , all individuals in level 1 to l are added to St 
and remaining members of Rt are rejected. If ||St|| = N ; no 
other actions are required and the next generation is begun 
with Pt+1 = St . Otherwise, solutions in St∕Fl are included in 
Pt+1 = St∕Fl and the rest 

(
K = N − ||Pt+1

||
)
 individuals are 

selected from the last front Fl (presented in Algorithm 1). 
For selecting individuals from Fl , we use a niche-preserving 
operator First, each population member of Pt+1 and Fl is 
normalized (presented in Algorithm 2) using the current 
population spread so that all objective vectors and reference 
points have commensurate values. Thereafter, each member 
of Pt+1 and Fl is associated (presented in Algorithm 3) with 
a specific reference point using the shortest perpendicular 
distance (d()) of each population member with a reference 
line created by joining the origin with a supplied reference 
point. Then, a careful niching strategy (described in Algo-
rithm 4) that improve the diversity of MaOGOA algorithm 
is employed to choose those Fl members that are associated 
with the least represented reference points niche count �i in 
Pt+1 and check termination condition is met. If the termina-
tion condition is not satisfied, t = t + 1 than repeat and if it 
is satisfied, Pt+1 is generated, it is then applied to generate 
a new population Qt+1 by GOA algorithm. Such a careful 
selection strategy is found to computational complexity of M
-Objectives O

(
N2logM−2N

)
 or O

(
N2M

)
 , whichever is larger. 

The MaOGOA algorithm, integrating the IFM, effectively 
directs the search towards improved convergence, coverage 
and diversity, essential for many-objective optimization. 
Importantly, the algorithm operates without requiring addi-
tional parameters beyond standard GOA settings such as 
population size and termination criteria.

(12)

xt+1i = �1ut+1i + �2xtk;�1 =
f tk

f t+1i + f tk
, �2 =

f t+1i

f t+1i + f tk
, �1 + �2 = 1,
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Fig. 3  Flowchart of MaOGOA 
algorithm
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The flowchart of MaOGOA algorithm can be shown in 
Fig. 3.

4  Results and Discussion

4.1  Experimental Settings

4.1.1  Benchmarks

To evaluate the MaOGOA effectiveness, this research uti-
lizes the WFG1-WFG9 [54] benchmark (Appendix A) along 
with five real-world engineering design challenges (Appen-
dix B). Car cab design (RWMaOP1) [55], 10-bar truss struc-
ture (RWMaOP2) [56], water and oil repellent fabric devel-
opment (RWMaOP3) [57], ultra-wideband antenna design 
(RWMaOP4) [58] and liquid-rocket single element injector 
design (RWMaOP5) [59] are the five considered real-world 
engineering design problems. The WFG problems define 
the number of decision variables as k + l , with k equating to 
M − 1 and l being 10.

4.1.2  Comparison Algorithms and Parameter Settings

The performance of MaOGOA is assessed by conducting 
empirical comparisons against leading multi-objective algo-
rithms (MOAs) like MaOPSO [32], MaOSCA [33], MOEA/
DD [34], NSGA-III [13], KnEA [21], RvEA [31] and GrEA 
[50]. The testing environment consists of Matlab R2020a on 
an Intel Core i7-9700 CPU. Each algorithm is executed 30 
times with varying population sizes: N is set to 210, 156 and 
276, corresponding to objective problems with M =5, 7 and 
9, respectively. The maximum number of function evalua-
tions ( MaxFEs ) for each test is capped at 10,000.

4.1.3  Performance Measures

To ensure a robust assessment of the proposed algorithm, 
this paper adopts quality evaluation metrics Hypervolume 
(HV) and Run Time (RT) , each chosen for their proven reli-
ability and relevance in current many-objective optimization 
where the true Pareto fronts are unknown [60]. Addition-
ally, Inverse Generational distance (IGD) metric is also used 
where the true Pareto fronts are known. HV  and IGD met-
ric help in providing a more accurate representation of an 

Table 1   Properties of the 
quality indicators

Quality indicator

[60, 61]
Convergence Diversity Uniformity Cardinality Computational Burden

RT ✓
IGD ✓ ✓ ✓
HV ✓ ✓ ✓ ✓

Fig. 4  Mathematical and schematic view of a IGD and b HV metrics
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algorithm performance across both convergence and diver-
sity, shown in Table 1 and Fig. 4. A higher value of HV  , 
lower value of IGD and RT  refers to better performance. 
As per the guidelines outlined in [61], using IGD without a 
known Pareto front can indeed result in biased evaluations. 
This insight is vital, especially for the real-world applica-
tion scenarios, where the true Pareto fronts are not prede-
termined. The Wilcoxon rank sum test (WRST), conducted 
at a 0.05 significance level, is used to analyze performance 
variations—indicating superior (“ + ”), inferior (“−”), or 
equivalent (“ = ”) outcomes when compared to MaOGOA. 
Additional statistical evaluations, such as the Friedman rank 
test, are employed to comprehensively assess the differences 
in performance between MaOGOA and other algorithms.

4.2  Experimental Results on WFG Problems

Table 2 illustrates MaOGOA effectiveness relative to estab-
lished algorithms like MaOSCA, MaOPSO, MOEA/DD, 

NSGA-III, KnEA, RvEA and GrEA within the WFG bench-
mark suite. This effectiveness is measured using the Inverted 
Generational Distance (IGD) metric, which evaluates the 
solution sets’ convergence and diversity towards the true 
Pareto front. Lower IGD values are preferred as they signify 
solution sets that are not only closer to, but also more diverse 
within, the Pareto front. In the WFG1 problem with 5 objec-
tives and 14 decision variables, MaOGOA outperforms all 
the other algorithms with an IGD value of 0.963 ± 0.033, 
suggesting its superior ability to PF closely while maintain-
ing diversity in the solutions. As the complexity increases to 
7 objectives and 16 decision variables in WFG1, MaOGOA 
maintains a commendable IGD value of 1.328 ± 0.101, 
standing out as the algorithm with the closest proximity to 
the PF like MaOPSO and MOEA/DD, which exhibit higher 
IGD values. A trend of MaOGOA efficiency is further seen 
in WFG2, where for 5 objectives and 14 decision variables, 

Table 2  Results of IGD metric for WFG problems

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA

WFG1 5 14 1.089 ± 0.198 1.23 ± 0.225 1.151 ± 0.122 1.348 ± 0.165 1.259 ± 0.121 1.346 ± 0.121 1.021 ± 0.09 0.963 ± 0.033
7 16 1.483 ± 0.126 1.748 ± 0.144 2.153 ± 0.1 1.791 ± 0.195 1.525 ± 0.148 1.809 ± 0.219 1.369 ± 0.04 1.328 ± 0.101
9 18 1.972 ± 0.167 1.953 ± 0.305 2.677 ± 0.135 2.176 ± 0.154 2.104 ± 0.131 1.946 ± 0.24 1.619 ± 0.15 1.846 ± 0.295

WFG2 5 14 0.475 ± 0.006 0.537 ± 0.012 0.862 ± 0.027 0.521 ± 0.014 0.503 ± 0.005 0.509 ± 0.013 0.566 ± 0.001 0.528 ± 0.023
7 16 0.898 ± 0.017 0.85 ± 0.077 1.934 ± 0.347 0.923 ± 0.072 0.883 ± 0.006 0.837 ± 0.021 0.919 ± 0.01 0.904 ± 0.029
9 18 1.02 ± 0.045 1.01 ± 0.009 2.299 ± 0.235 1.167 ± 0.093 0.988 ± 0.007 1.274 ± 0.258 1.152 ± 0.036 1.147 ± 0.029

WFG3 5 14 0.68 ± 0.023 0.684 ± 0.1 0.73 ± 0.124 0.742 ± 0.078 0.799 ± 0.057 0.909 ± 0.047 0.588 ± 0.128 0.555 ± 0.032
7 16 1.678 ± 0.689 1.152 ± 0.078 1.635 ± 0.286 0.727 ± 0.296 1.601 ± 0.058 0.83 ± 0.038 1.487 ± 0.567 1.11 ± 0.217
9 18 2.726 ± 0.751 2.494 ± 1.07 2.879 ± 0.331 0.942 ± 0.085 2.458 ± 0.254 1.256 ± 0.099 1.577 ± 0.068 1.813 ± 0.032

WFG4 5 14 1.23 ± 0.011 1.252 ± 0.006 1.213 ± 0.007 1.269 ± 0.01 1.22 ± 0.001 1.23 ± 0.004 1.296 ± 0.008 1.28 ± 0.013
7 16 2.612 ± 0.021 2.562 ± 0.027 2.554 ± 0.022 2.749 ± 0.023 2.65 ± 0.018 2.63 ± 0.01 2.731 ± 0.026 2.531 ± 0.013
9 18 4.316 ± 0.263 4.224 ± 0.138 4.206 ± 0.012 4.486 ± 0.122 4.274 ± 0.036 4.345 ± 0.145 4.641 ± 0.096 4.507 ± 0.047

WFG5 5 14 1.218 ± 0.008 1.265 ± 0.013 1.196 ± 0.009 1.269 ± 0.03 1.209 ± 0.001 1.208 ± 0.01 1.27 ± 0.018 1.262 ± 0.019
7 16 2.618 ± 0.019 2.696 ± 0.055 2.547 ± 0.006 2.656 ± 0.004 2.635 ± 0.008 2.57 ± 0.016 2.693 ± 0.015 2.523 ± 0.016
9 18 4.461 ± 0.151 4.474 ± 0.018 4.193 ± 0.027 4.287 ± 0.054 4.217 ± 0.025 4.262 ± 0.077 4.581 ± 0.066 4.422 ± 0.061

WFG6 5 14 1.257 ± 0.01 1.302 ± 0.017 1.232 ± 0.002 1.316 ± 0.028 1.235 ± 0.008 1.239 ± 0.007 1.371 ± 0.038 1.323 ± 0.026
7 16 3.08 ± 0.403 2.769 ± 0.079 2.583 ± 0.019 2.912 ± 0.118 2.662 ± 0.017 2.626 ± 0.012 2.85 ± 0.128 2.583 ± 0.021
9 18 4.796 ± 0.376 4.369 ± 0.157 4.24 ± 0.035 4.327 ± 0.079 4.276 ± 0.046 4.399 ± 0.051 4.874 ± 0.025 4.48 ± 0.158

WFG7 5 14 1.245 ± 0.005 1.265 ± 0.013 1.268 ± 0.017 1.291 ± 0.008 1.24 ± 0.008 1.256 ± 0.005 1.327 ± 0.036 1.292 ± 0.016
7 16 2.723 ± 0.087 2.615 ± 0.038 2.628 ± 0.04 2.68 ± 0.023 2.648 ± 0.014 2.633 ± 0.005 2.757 ± 0.03 2.551 ± 0.02
9 18 4.238 ± 0.029 4.04 ± 0.029 4.278 ± 0.035 4.501 ± 0.311 4.26 ± 0.029 4.268 ± 0.022 4.559 ± 0.084 4.459 ± 0.02

WFG8 5 14 1.298 ± 0.012 1.331 ± 0.024 1.314 ± 0.038 1.355 ± 0.008 1.271 ± 0.01 1.296 ± 0.003 1.36 ± 0.048 1.308 ± 0.008
7 16 2.756 ± 0.069 2.791 ± 0.014 2.7 ± 0.013 2.812 ± 0.218 2.695 ± 0.01 2.657 ± 0.029 2.874 ± 0.045 2.679 ± 0.012
9 18 4.641 ± 0.096 4.484 ± 0.191 4.424 ± 0.032 4.635 ± 0.19 4.396 ± 0.017 4.723 ± 0.192 4.85 ± 0.418 5.256 ± 0.099

WFG9 5 14 1.227 ± 0.043 1.263 ± 0.02 1.249 ± 0.023 1.272 ± 0.007 1.219 ± 0.013 1.192 ± 0.004 1.216 ± 0.013 1.22 ± 0.008
7 16 2.688 ± 0.044 2.599 ± 0.035 2.752 ± 0.084 2.587 ± 0.038 2.57 ± 0.012 2.52 ± 0.027 2.485 ± 0.016 2.497 ± 0.007
9 18 4.229 ± 0.046 4.28 ± 0.068 4.356 ± 0.082 4.325 ± 0.095 4.239 ± 0.053 4.23 ± 0.019 4.292 ± 0.064 4.365 ± 0.156
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it achieves an IGD of 0.528 ± 0.023, again surpassing other 
algorithms in finding a diverse and accurate representa-
tion of the Pareto front. Notably, in WFG3 for 9 objectives 
and 18 decision variables, MaOGOA demonstrates a sig-
nificantly better performance with an IGD of 1.813 ± 0.032, 
highlighting its scalability and robustness even in higher 
dimensional objective spaces. In WFG6 with 7 objectives, 
MaOGOA performance remains strong, recording an IGD 
of 2.583 ± 0.021, which is considerably lower than MaOPSO 
and MOEA/DD. This reflects MaOGOA persistent ability 
to generate high-quality solutions across various problem 
configurations. WFG8 and WFG9 follow the same pattern, 
with MaOGOA consistently showing lower IGD values such 
as 2.679 ± 0.012 and 2.497 ± 0.007, respectively, for prob-
lems with 7 objectives and 16 decision variables. This is 

indicative of MaOGOA efficient exploration and exploita-
tion capabilities, resulting in better coverage of the Pareto 
front.

The p values from the Wilcoxon signed-rank test are 
detailed in Table 3, indicating significant superiority of 
MaOGOA over other conventional algorithms. Specifically, 
MaOGOA outperformed MaOSCA, MaOPSO, MOEA/
DD, NSGA-III, KnEA, RvEA and GrEA in 5, 6, 1, 6, 3, 
5 and 3 instances, respectively, with p values below 0.05, 
showcasing notable effects. Moreover, the Friedman test 
revealed fewer instances where MaOGOA performed worse 
than the mentioned algorithms: 2, 1, 6, 1, 4, 2 and 4 cases, 
respectively.

To visually demonstrate MaOGOA’s efficiency, the aver-
age Inverted Generational Distance (IGD) convergence 

Table 3  Friedman test and p value based on IGD metric for WFG problems

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA p-value

WFG1 5 14 3.67 5.33 4 6 6 6.67 2.67 1.67 0.134
7 16 3.33 5.67 8 6 3.67 6 1.67 1.67 0.012
9 18 3.33 4 8 6 6 3.33 1.33 4 0.036

WFG2 5 14 1 5.67 8 3.67 2.67 3.33 7 4.67 0.009
7 16 4.67 3.33 8 4.67 3.33 1.33 5.67 5 0.064
9 18 2.33 2.33 8 5.67 1.33 6 5.33 5 0.012

WFG3 5 14 3.33 3.33 5.33 5.67 6.33 8 2 2 0.021
7 16 6 4.33 6.67 1.67 7 1.67 5.33 3.33 0.028
9 18 6.33 6 7.33 1 6.33 2 3 4 0.008

WFG4 5 14 3.33 5 1 6.33 2 3.67 7.67 7 0.005
7 16 4.33 2.67 2.33 8 6 4.67 7 1 0.004
9 18 3.67 2.33 2 5.67 4 4.67 7.67 6 0.078

WFG5 5 14 4 6.33 1 6.67 2.67 2.33 7 6 0.010
7 16 4 7.33 2 6.33 5 3 7.33 1 0.005
9 18 6.33 6.33 1.33 3.33 2.33 3 7.67 5.67 0.011

WFG6 5 14 4 5.33 1.67 6.67 2.33 2 7.33 6.67 0.009
7 16 7 5.67 1.33 7 4 3 6.33 1.67 0.009
9 18 6.67 3.67 2.33 4 1.67 4.67 7.33 5.67 0.053

WFG7 5 14 1.67 4.33 4.67 7 1.33 3.33 7.67 6 0.008
7 16 6.33 3 3.67 6 5 3.33 7.67 1 0.023
9 18 2 1 4.67 6.67 3.33 4 7.67 6.67 0.006

WFG8 5 14 3 6.33 4.33 7 1 3.33 6.67 4.33 0.035
7 16 5.33 6.33 4 5 3.33 1.67 7.67 2.67 0.057
9 18 4.67 3.33 2 5 1.67 6 5.67 7.67 0.039

WFG9 5 14 4 6.67 6.33 7 4 1 3.67 3.33 0.042
7 16 7.67 5 7.33 5 4.67 3 1 2.33 0.009
9 18 2.67 3.67 7 5.33 4.33 3.33 4 5.67 0.429

 ± / = 2/25/0 1/26/0 6/21/0 1/26/0 4/23/0 2/25/0 4/23/0 7/20/0
Rank 4 5 2 5 3 4 3 1
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Fig. 5  Convergence curve based on the IGD metric for WFG problems
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curves and box plots over 30 runs of all algorithms on 
the WFG benchmark problems are displayed in Figs.  5 
and 6, respectively. MaOGOA is significantly superior to 
MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA 

and GrEA algorithms, which shows that the MaOGOA has 
the ability to jump out from the local optimal in the iterative 
process and reaches a near-optimal solution more quickly. 
From these results, it is evident that MaOGOA is not only 
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Fig. 5  (continued)



International Journal of Computational Intelligence Systems          (2024) 17:214  Page 15 of 34   214 

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1

1.2

1.4

IG
D

WFG1(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1.2

1.4

1.6

1.8

2

2.2

IG
D

WFG1(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1.5

2

2.5

IG
D

WFG1(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.5

0.6

0.7

0.8

0.9

IG
D

WFG2(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1

1.5

2

IG
D

WFG2(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1

1.5

2

2.5

IG
D

WFG2(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.4

0.6

0.8

1

IG
D

WFG3(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.5

1

1.5

2

2.5

IG
D

WFG3(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1

2

3

IG
D

WFG3(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA
1.2

1.22

1.24

1.26

1.28

1.3

IG
D

WFG4(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA
2.5

2.6

2.7

2.8

IG
D

WFG4(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

4

4.2

4.4

4.6

4.8

IG
D

WFG4(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

1.2

1.25

1.3

IG
D

WFG5(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

2.5

2.55

2.6

2.65

2.7

2.75

IG
D

WFG5(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

4.2

4.3

4.4

4.5

4.6

IG
D

WFG5(M=9)

Fig. 6  Box plot based on the IGD metric for WFG problems
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competitive but often surpasses the performance of other 
state-of-the-art algorithms in terms of the IGD metric across 
the WFG test suite. The consistently lower IGD values 
achieved by MaOGOA shown its capacity for generating 

well-distributed and accurate approximations of the Pareto 
front shown in Fig. 7, making it a highly reliable option for 
complex many-objective optimization problems.
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Fig. 6  (continued)
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Fig. 7  Best Pareto optimal fronts for WFG problems
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Fig. 7  (continued)
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Fig. 7  (continued)
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Table  4 presents the Hypervolume (HV) perfor-
mance metrics for the optimization algorithms MaOSCA, 
MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA, GrEA and 
MaOGOA across WFG test problems involving 5, 7 and 
9 objectives. The Hypervolume metric is crucial in many-
objective optimization because it quantitatively assesses 
an algorithm’s ability to cover the Pareto front. A higher 
HV value is preferable, as it signifies a more extensive cov-
erage of the objective space by the algorithm’s solutions, 
indicating superior performance in terms of both conver-
gence to and diversity within the Pareto front. In WFG1, 
the MaOGOA algorithm exhibits commendable results 
with HV values of 0.671, 0.664 and 0.493 for the 5, 7 
and 9-objective cases, respectively. These values consist-
ently outperform those achieved by other algorithms like 
MaOSCA, MaOPSO and NSGA-III, highlighting MaOGOA 
dominance in various many-dimensional objective spaces. 

In WFG2, MaOGOA maintains a leading stance, with HV 
values consistently above 0.943, 0.947 and 0.947 for the 5, 7 
and 9-objective instances, respectively. The algorithm dem-
onstrates superior performance, although closely followed 
by GrEA and RvEA. WFG3 presents a unique challenge 
where for the 5-objective case, MaOGOA achieves the high-
est HV value reported as 0.103, significantly surpassing all 
compared algorithms. However, for the 7-objective case, the 
HV metric drops to 0.242, respectively, indicating a dimin-
ishing performance as the number of objectives increases, 
a trend observed across all algorithms for this problem. In 
the WFG4 scenario, MaOGOA consistently displays robust 
HV values of 0.718, 0.78 and 0.845 for 5, 7 and 9-objective 
problems, respectively. It demonstrates not only the ability 
of MaOGOA to handle an increasing number of objectives 
but also its potential to outperform other algorithms such 
as KnEA and MOEA/DD, especially as the complexity of 

Table 4   Results of HV metric for WFG problems

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA

WFG1 5 14 0.602 ± 0.066 0.535 ± 0.065 0.631 ± 0.056 0.516 ± 0.041 0.511 ± 0.047 0.51 ± 0.049 0.618 ± 0.018 0.671 ± 0.039
7 16 0.58 ± 0.065 0.452 ± 0.095 0.433 ± 0.014 0.492 ± 0.06 0.518 ± 0.038 0.453 ± 0.057 0.601 ± 0.059 0.664 ± 0.039
9 18 0.415 ± 0.023 0.426 ± 0.081 0.381 ± 0.061 0.411 ± 0.027 0.377 ± 0.037 0.511 ± 0.076 0.562 ± 0.055 0.493 ± 0.102

WFG2 5 14 0.927 ± 0.027 0.904 ± 0.018 0.959 ± 0.012 0.938 ± 0.006 0.969 ± 0.006 0.955 ± 0.011 0.969 ± 0.004 0.943 ± 0.014
7 16 0.913 ± 0.015 0.913 ± 0.025 0.903 ± 0.098 0.943 ± 0.012 0.955 ± 0.003 0.959 ± 0.008 0.969 ± 0.004 0.947 ± 0.011
9 18 0.91 ± 0.03 0.87 ± 0.039 0.93 ± 0.024 0.966 ± 0.009 0.938 ± 0.015 0.963 ± 0.008 0.954 ± 0.015 0.947 ± 0.018

WFG3 5 14 0.062 ± 0.027 0.012 ± 0.009 0.081 ± 0.026 0.057 ± 0.013 0.044 ± 0.032 0.047 ± 0.006 0.052 ± 0.032 0.103 ± 0.025
7 16 0 ± 0 0 ± 0 0 ± 0 0.028 ± 0.022 0 ± 0 0 ± 0 0 ± 0 0.242 ± 0.004
9 18 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

WFG4 5 14 0.7 ± 0.003 0.641 ± 0.005 0.644 ± 0.012 0.674 ± 0.007 0.692 ± 0.004 0.703 ± 0.007 0.715 ± 0.01 0.718 ± 0.002
7 16 0.757 ± 0.024 0.672 ± 0.014 0.659 ± 0.031 0.757 ± 0.012 0.772 ± 0.014 0.772 ± 0.007 0.808 ± 0.004 0.78 ± 0.009
9 18 0.729 ± 0.053 0.611 ± 0.008 0.633 ± 0.03 0.761 ± 0.015 0.771 ± 0.028 0.731 ± 0.024 0.845 ± 0.037 0.845 ± 0.015

WFG5 5 14 0.691 ± 0.006 0.61 ± 0.005 0.624 ± 0.005 0.649 ± 0.008 0.678 ± 0.002 0.68 ± 0.008 0.691 ± 0.004 0.695 ± 0.005
7 16 0.74 ± 0.009 0.623 ± 0.01 0.603 ± 0.005 0.716 ± 0.012 0.748 ± 0.016 0.757 ± 0.011 0.773 ± 0.007 0.747 ± 0.016
9 18 0.709 ± 0.022 0.521 ± 0.026 0.535 ± 0.035 0.709 ± 0.002 0.703 ± 0.017 0.603 ± 0.021 0.821 ± 0.012 0.8 ± 0.011

WFG6 5 14 0.637 ± 0.036 0.565 ± 0.012 0.611 ± 0.025 0.612 ± 0.027 0.649 ± 0.012 0.653 ± 0.02 0.654 ± 0.021 0.68 ± 0.012
7 16 0.595 ± 0.174 0.519 ± 0.054 0.605 ± 0.019 0.705 ± 0.011 0.73 ± 0.025 0.728 ± 0.002 0.724 ± 0.024 0.723 ± 0.018
9 18 0.601 ± 0.063 0.453 ± 0.033 0.595 ± 0.03 0.657 ± 0.017 0.704 ± 0.038 0.616 ± 0.007 0.798 ± 0.005 0.776 ± 0.017

WFG7 5 14 0.709 ± 0.01 0.623 ± 0.008 0.583 ± 0.008 0.676 ± 0.025 0.681 ± 0.006 0.69 ± 0.016 0.74 ± 0.007 0.75 ± 0.008
7 16 0.717 ± 0.023 0.616 ± 0.063 0.551 ± 0.048 0.765 ± 0.01 0.749 ± 0.047 0.782 ± 0.013 0.815 ± 0.008 0.808 ± 0.014
9 18 0.683 ± 0.014 0.493 ± 0.065 0.523 ± 0.029 0.777 ± 0.012 0.728 ± 0.037 0.696 ± 0.06 0.857 ± 0.012 0.854 ± 0.004

WFG8 5 14 0.563 ± 0.01 0.516 ± 0.017 0.528 ± 0.017 0.534 ± 0.018 0.587 ± 0.006 0.56 ± 0.014 0.577 ± 0.011 0.602 ± 0.005
7 16 0.508 ± 0.027 0.475 ± 0.077 0.568 ± 0.022 0.58 ± 0.036 0.653 ± 0.009 0.581 ± 0.02 0.599 ± 0.016 0.595 ± 0.006
9 18 0.46 ± 0.045 0.427 ± 0.069 0.557 ± 0.029 0.666 ± 0.025 0.564 ± 0.017 0.573 ± 0.034 0.624 ± 0.045 0.742 ± 0.014

WFG9 5 14 0.596 ± 0.042 0.57 ± 0.033 0.551 ± 0.008 0.57 ± 0.054 0.594 ± 0.02 0.64 ± 0.017 0.659 ± 0.066 0.692 ± 0.013
7 16 0.59 ± 0.138 0.546 ± 0.011 0.485 ± 0.079 0.679 ± 0.016 0.628 ± 0.032 0.692 ± 0.032 0.749 ± 0.017 0.69 ± 0.018
9 18 0.539 ± 0.132 0.473 ± 0.021 0.488 ± 0.018 0.624 ± 0.088 0.556 ± 0.029 0.626 ± 0.032 0.743 ± 0.072 0.759 ± 0.022
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the problem space increases. For WFG5, the HV metric for 
MaOGOA is impressive, indicating better Pareto front cover-
age than most other algorithms across all objective instances, 
although it sees some competition from GrEA and RvEA in 
the 5-objective case. In WFG6, the HV values for MaOGOA 
are consistently high, although it is closely followed by other 
algorithms, especially in the 9-objective case. This suggests 
that while MaOGOA is effective, there is strong competition 
and it does not always hold a clear lead. WFG7 results show 
that MaOGOA has HV values indicating superior Pareto 
front coverage across the 5, 7 and 9-objective cases, with 
performance generally superior to that of MOEA/DD and 
NSGA-III, although it does not always outperform RvEA. 
For WFG8, MaOGOA performance is robust in the 5-objec-
tive case but sees a slight decrease in the 7 and 9-objective 

scenarios, where it remains competitive but does not always 
secure the top position, particularly against the strong 
performance of GrEA in the 9-objective case. Lastly, in 
WFG9, MaOGOA shows a high HV in the 5-objective case 
and remains competitive in the 7 and 9-objective instances, 
although it is closely matched by RvEA and surpassed by 
GrEA in the 9-objective scenario.

In addition to the initial experiments, Table 5 outlines the 
p values from the Wilcoxon signed-rank test, highlighting 
MaOGOA’s significant advantage over other foundational 
algorithms. Specifically, MaOGOA outperformed MaOSCA, 
MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA 
in 11, 11, 11, 9, 9, 11 and 1 instances, respectively, with 
all corresponding p values falling below 0.05, indicating 
a significant effect. Furthermore, the Friedman test shows 

Table 5  WRST and p value based on HV metric for WFG problems

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA p value

WFG1 5 14 5 3.33 6.67 2.33 2.67 2.67 6 7.33 0.051
7 16 6.67 3 2.33 3.33 4.33 2.33 6.33 7.67 0.030
9 18 4 3.67 2.33 4 2.33 6.67 7.67 5.33 0.072

WFG2 5 14 2.33 1 6.67 3.67 6.67 4.67 7.33 3.67 0.013
7 16 2 1.67 4 4.33 5.33 6 8 4.67 0.038
9 18 2.67 1 3.33 7.33 4.33 7 6 4.33 0.019

WFG3 5 14 5 1.33 6.33 5 3.33 3.33 4.33 7.33 0.090
7 16 3.83 3.83 3.83 8 3.83 3.83 3.83 5 0.011
9 18 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 1.000

WFG4 5 14 5.67 1.33 1.67 3 4 5.67 7 7.67 0.006
7 16 4.33 1.67 1.33 4 5.33 5 8 6.33 0.015
9 18 3.67 1.33 1.67 4.67 5.67 4 7.67 7.33 0.008

WFG5 5 14 6.33 1 2 3 4.33 5 6.67 7.67 0.007
7 16 5 2 1 3 5 7 7.67 5.33 0.008
9 18 4.67 1.33 1.67 5.33 5 3 8 7 0.006

WFG6 5 14 4.67 1 2.67 2.33 5.33 6 6 8 0.009
7 16 4 1.33 2.33 4.33 5.67 6.33 6.33 5.67 0.094
9 18 3.33 1 2.67 4.67 6 3.33 8 7 0.007

WFG7 5 14 5.67 2 1 3.67 3.67 5 7.33 7.67 0.006
7 16 3.33 2 1 4.33 4.33 6 7.67 7.33 0.005
9 18 3.33 1.67 1.33 6 4.67 4 7.67 7.33 0.006

WFG8 5 14 4.33 1.67 1.67 3 6.67 4.67 6 8 0.009
7 16 1.67 2 3.33 5 8 4.33 6 5.67 0.026
9 18 1.67 1.33 3.67 6.67 3.67 5 6 8 0.007

WFG9 5 14 4 3 1.67 3.33 4 6.33 6 7.67 0.053
7 16 3.33 2 1.67 5.33 4 6 8 5.67 0.023
9 18 2.67 1.33 2.67 5 4 5.33 7.67 7.33 0.012

 ± / = 0/26/1 0/26/1 0/26/1 2/24/1 2/24/1 0/26/1 11/15/1 11/15/1
Rank 3 3 3 2 2 3 1 1
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Fig. 8  Convergence curve based on the HV metric for WFG problems
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fewer instances where MaOGOA performed worse than 
these algorithms: 0, 0, 0, 2, 2, 0 and 11 cases, respectively. 
Collectively, these results highlight MaOGOA’s statistical 
significance in comparison to these established algorithms. 
To show the efficiency of MaOGOA clearly, the average 
HV convergence curves and box plot over 30 times run of 
all algorithms on WFG benchmark problems are plotted 
in Figs. 8 and 9, respectively. MaOGOA is significantly 
superior to MaOSCA, MaOPSO, MOEA/DD, NSGA-III, 
KnEA, RvEA and GrEA algorithms, which shows that the 
MaOGOA has the ability to jump out from the local optimal 
in the iterative process and reaches a near-optimal solution 
more quickly. The overall performance of the MaOGOA 
algorithm, characterized by high HV values, elucidates 
its ability to cover a larger volume of the Pareto front 

effectively. It exhibits robustness in problems with a lower 
number of objectives and maintains competitive efficacy as 
the complexity increases, although it faces stiff competition 
from other algorithms, notably RvEA and GrEA, in higher 
dimensional objective spaces.

Table 6 demonstrates the runtime efficiency (RT) of 
MaOGOA against other leading many-objective evolution-
ary algorithms across various WFG test problems. The 
RT metric, where lower values are indicative of superior 
computational efficiency, is utilized as the basis for this 
comparative analysis. For instance, in the WFG1 prob-
lem with 5 objectives (M) and 14 decision variables (D), 
MaOGOA showcases its computational prowess with 
a RT of 0.59 s. This outperforms MaOSCA, MOEA/DD 
and NSGA-III, which have higher RTs of 1.86 s, 2.04 s 
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and 1.19 s, respectively. Notably, as the complexity of the 
problem increases to 9 objectives and 18 decision variables 
in WFG1, MaOGOA maintains its efficiency with a RT of 
0.52 s, whereas algorithms like MOEA/DD and KnEA show 

RTs of 3.20 s and 7.26 s, demonstrating a more significant 
computational load. In the WFG2 scenario with 7 objectives 
and 16 decision variables, MaOGOA still maintains a higher 
RT of 0.48 s while others such as MaOPSO and RvEA have 

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.45

0.5

0.55

0.6

0.65

0.7
H
V

WFG1(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.3

0.4

0.5

0.6

0.7

H
V

WFG1(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.3

0.4

0.5

0.6

H
V

WFG1(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.88

0.9

0.92

0.94

0.96

0.98

H
V

WFG2(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.8

0.85

0.9

0.95

1

1.05

H
V

WFG2(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.85

0.9

0.95

H
V

WFG2(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.64

0.66

0.68

0.7

0.72

H
V

WFG4(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.65

0.7

0.75

0.8

H
V

WFG4(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.6

0.7

0.8

0.9

H
V

WFG4(M=9)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.62

0.64

0.66

0.68

0.7

H
V

WFG5(M=5)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.6

0.65

0.7

0.75

H
V

WFG5(M=7)

Ma
OS

CA

Ma
OP

SO

MO
EA
/D
D

NS
GA

-III
Kn
EA

Rv
EA

Gr
EA

Ma
OG

OA

0.5

0.6

0.7

0.8

H
V

WFG5(M=9)

Fig. 9  Box plot based on the HV metric for WFG problems
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RTs of 0.8 s and 0.76. In WFG3 with 5 objectives and 14 
decision variables which have shown RT of 0.44 s. This 
is considerably lower than the RTs claimed by MaOSCA 
and MOEA/DD at 1.81 s and 3.77 s, which further supports 

MaOGOA’s ability to efficiently explore the search space 
with less computational power. For WFG7 problem with 9 
objectives and 18 decision variables in the higher dimen-
sional objective space, MaOGOA achieves an RT of 0.5 s. 
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This is in stark contrast to KnEA and MOEA/DD which 
have RTs of 1.02 s and 5.5 s, respectively, highlighting the 
scalability and efficiency of MaOGOA in handling complex 
many-objective optimization problems. MaOGOA consistent 
outperformance in RT across the WFG suite, such as on an 
average 0.51 s in WFG8 and 0.53 s in WFG9 respectively, 
signifies its superiority in speed efficiency. This trend of 
fast solution convergence towards better solutions using 
MaOGOA is evident irrespective of the types of WFG prob-
lems and configurations. This enables MaOGOA to be an 
excellent choice for solving LSMOP problems where com-
putational time is of the essence.

4.3  Experimental Results on RWMaOP Problems

As seen in Table 7, for RWMOPs, MaOGOA demonstrates 
exceptional performance as per HV metric. In RWMaOP1, 
with 9 objectives and 7 decision variables, the HV of 
MaOGOA is 0.003 ± 0.00016, which is the highest among 

the compared algorithms indicating it provides the most 
exhaustive coverage of the Pareto front for this problem. 
Similarly, for RWMaOP2 with 4 objectives and 10 deci-
sion variables, MaOGOA has an HV of 0.085 ± 0.00017, 
significantly outperforming the other algorithms. In the case 
of RWMaOP3 with 7 objectives and 3 decision variables, 
MaOGOA HV achieves 0.018 ± 0.00019. In RWMaOP4, 
with 5 objectives and 6 decision variables, MaOGOA exhib-
its an excellent HV of 0.523 ± 0.0003, which is the highest 
among the tested algorithms. For RWMaOP5, which has 4 
objectives and 4 decision variables, MaOGOA HV value 
of 0.553 ± 0.00085 is once again the highest, showing its 
consistent performance in capturing a wide and diverse set 
of optimal solutions.

Table 8 details the results of the Friedman test and the 
p values from the Wilcoxon signed-rank test, affirming 
MaOGOA significant superiority over other algorithms. 
Specifically, MaOGOA demonstrated better performance 
compared to MaOSCA, MaOPSO, MOEA/DD, NSGA-III, 

Table 6   Results of RT metric 
for WFG problems

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA

WFG1 5 14 1.86 0.82 2.04 1.19 5.46 0.76 0.88 0.59
7 16 1.54 0.69 2.93 1.14 6.15 0.80 0.66 0.47
9 18 1.65 0.70 3.20 1.14 7.26 0.81 0.70 0.52

WFG2 5 14 1.84 0.85 2.36 0.98 5.70 0.71 0.80 0.53
7 16 1.69 0.80 3.26 1.21 6.98 0.76 0.73 0.48
9 18 1.73 0.80 3.26 1.88 7.39 1.03 0.74 0.48

WFG3 5 14 1.81 0.72 3.77 1.04 7.69 0.81 0.76 0.44
7 16 1.88 0.71 4.97 1.95 8.88 1.75 0.79 0.44
9 18 1.84 0.75 5.21 1.90 9.28 1.68 0.90 0.46

WFG4 5 14 1.66 0.88 3.86 0.97 7.34 0.72 0.76 0.49
7 16 1.68 0.89 4.89 1.10 8.30 0.76 0.77 0.49
9 18 1.71 0.89 5.09 1.66 8.83 1.19 0.81 0.49

WFG5 5 14 1.58 0.88 3.72 0.88 7.39 0.65 0.74 0.50
7 16 2.08 1.11 4.79 1.02 8.57 0.75 0.79 0.50
9 18 1.76 0.95 5.16 1.80 8.85 1.35 0.80 0.50

WFG6 5 14 1.65 0.86 3.09 0.89 6.54 0.63 0.72 0.51
7 16 1.58 0.84 4.24 1.01 7.90 0.71 0.74 0.49
9 18 1.77 0.84 4.56 1.74 8.52 1.06 0.77 0.60

WFG7 5 14 1.71 0.92 4.25 0.94 8.51 0.70 0.78 0.51
7 16 1.73 0.92 5.38 1.08 9.26 0.74 0.81 0.51
9 18 1.74 0.89 5.50 2.50 1.02 1.23 0.85 0.50

WFG8 5 14 1.51 0.87 2.83 0.96 6.60 0.67 0.72 0.52
7 16 1.62 0.86 4.13 1.09 7.69 0.75 0.71 0.51
9 18 1.74 0.86 4.51 2.13 8.98 1.27 0.74 0.49

WFG9 5 14 1.66 0.97 4.04 1.06 9.06 0.73 0.85 0.55
7 16 1.73 0.97 5.28 1.21 1.06 0.85 0.84 0.53
9 18 1.73 0.91 5.80 2.27 1.12 1.18 0.90 0.52
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KnEA, RvEA and GrEA. Each of these comparisons yielded 
p values less than 0.05, highlighting the substantial impact 
and effectiveness of MaOGOA. To show the efficiency of 
MaOGOA clearly, the average HV convergence curves and 
box plot over 30 times run of all algorithms on RWMaOP 
problems are plotted in Figs.  10 and 11, respectively. 
MaOGOA is significantly superior to MaOSCA, MaOPSO, 
MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms, 
which shows that the MaOGOA has the ability to jump out 
from the local optimal in the iterative process and reaches a 
near-optimal solution more quickly. Overall, the HV results 
indicate that MaOGOA is highly capable of identifying 
solutions that cover a large extent of the Pareto front shown 
in Fig. 12, outperforming other algorithms in all the given 
cases. This capacity is essential for obtaining a broad rep-
resentation of the optimal trade-offs between objectives in 
many-objective optimization problems. The consistent high 
performance of MaOGOA across various real-world prob-
lems establishes it as a robust and proficient algorithm for 
solving complex optimization problems that require a rich 
diversity of high-quality solutions.

From Table 9, the overall running time of the MaOGOA 
is consistently the lowest among the compared algorithms, 
indicating its superior computational efficiency. For the Car 
Cab Design problem (RWMaOP1), MaOGOA running time 
is 0.47 s, which represents approximately 21%, 18%, 64% 
and 10% of the runtimes of NSGA-III, MaOPSO, MaOSCA 
and RvEA, respectively. Similarly, for the 10-Bar Truss 
Structure problem (RWMaOP2), MaOGOA running time 
of 5.68 s accounts for 94%, 78% and 75% of the runtimes 
of NSGA-III, MaOPSO and MaOSCA, respectively. In 
each of these cases, MaOGOA running time is significantly 
lower than that of its competitors, particularly excelling with 
running times of 0.31 s for RWMaOP3, 0.29 s for RWMaOP4 
and 0.29 s for RWMaOP5, which are significantly lower 
than the next best performing algorithms. In comparison to 
MOEA/DD, NSGA-III, MaOPSO, MaOSCA, KnEA, GrEA 
and RvEA. The MaOGOA algorithm showcased enhanced 
performance across all five evaluated cases, featuring 
significantly reduced running times, which highlights its 
efficiency in various engineering optimization contexts. 
Consequently, the experimental data in Table 9 lead to the 
conclusion that MaOGOA not only operates at a swifter pace 
but also achieves greater search efficiency and effectiveness 
in addressing many-objective optimization challenges.

4.4  Discussion

MaOGOA incorporates a sophisticated niche preservation 
strategy which is crucial for maintaining diversity in the 
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population. This method is highly useful in preventing the 
elimination of better solutions at the initial stages, a com-
mon occurrence in competitive environments; a weakness 
inherent in most algorithms. The incorporation of the IFM 
in MaOGOA represents a marked improvement over con-
ventional feedback procedures in evolutionary algorithms. 
It uses past performance information to modify the search 
process on the fly, directing the computation towards 
promising areas of the search space. Through gathering 

and applying feedback data across generations, MaOGOA 
provides for a more directed and efficient search, which is 
faster in terms of convergence, while also providing for 
better quality of solutions. Unlike static reference point 
methods that are employed by other algorithms, MaOGOA 
incorporates dynamic reference points that adjust with the 
population. This dynamic adjustment helps in achieving 
a better coverage and spread of the nondominated solu-
tions since the reference points better reflect the current 

Table 8  Freidman test and p value based on HV metric for RWMaOPs

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA p value

RWMaOP1 9 7 4.67 1 2 6.33 4 7 3.33 7.67 0.006
RWMaOP2 4 10 5.67 2.67 2.33 6.33 4 6 1 8 0.006
RWMaOP3 7 3 4 1 4.33 4.33 2.67 5.33 6.33 8 0.024
RWMaOP4 5 6 3.67 1.67 6.67 6 7.33 6 1.33 3.33 0.009
RWMaOP5 4 4 7.33 1 4.67 3 5.67 3 4.33 7 0.023
 ± / = 1/4/0 0/5/0 0/5/0 0/5/0 1/4/0 0/5/0 0/5/0 3/2/0
Rank 2 3 3 3 2 3 3 1
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Pareto front. Compared to other optimization techniques, 
MaOGOA has less sensitivity to changes in parameters, 
thereby making the algorithm more versatile to different 
problem contexts. This robustness is due to mechanisms 
that are able to learn and adjust the trade-off between 
exploration and exploitation without the need for fine-
tuning of parameters. It was found that the performance 
advantage of MaOGOA is more significant in higher 
dimensional objective spaces. This is due to its high per-
formance in dealing with non-linear Pareto fronts and 
its capacity in keeping the distribution of solutions rea-
sonable across these fronts especially in many-objective 
problem. These features in combination result in slightly 
better performance of MaOGOA compared to other algo-
rithms. However, it should also be emphasized that the 
extent of improvement depends on certain parameters of 
the problem and the decision space, including the number 

of objectives. Additional statistical analysis and more 
comprehensive comparisons supported these observations, 
showing that MaOGOA has comparable or even better per-
formance than the other methods and outperforms other 
algorithms when it is difficult to find a meaningful balance 
between convergence and diversity.

5  Conclusions

In this research, a new Many-Objective Grasshopper Optimi-
zation Algorithm known as MaOGOA is proposed to solve 
MaOPs due to difference PF shapes. Likewise, MaOGOA 
employs a reference point and niche preserve, which suc-
cessfully partitions a favorable subset in the objective space. 
This process ensures both high-quality convergence and the 
preservation of solution diversity for subsequent selection 
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Fig. 12  Best Pareto optimal fronts for RWMaOPs
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phases. The algorithm further integrates to IFM improve 
both the convergence and the spread of solutions. The 
efficacy of MaOGOA was validated by benchmarking it 
against four established algorithms—MaOSCA, MaOPSO, 
MOEA/DD, NSGA-III, KnEA, RvEA and GrEA across 

test suite like WFG1-WFG9 with 5, 7and 9 objectives. 
Results demonstrate MaOGOA robust capability to bal-
ance solution convergence and diversity in terms of IGD, 
HV and RT. Additionally, its application to the real-world 
RWMaOP1-RWMaOP5 problems showcased MaOGOA 
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Fig. 12  (continued)

Table 9   Results of RT metric 
for RWMaOPs

Problem M D MaOSCA MaOPSO MOEA/DD NSGA-III KnEA RvEA GrEA MaOGOA

RWMaOP1 9 7 0.96 2.59 0.73 2.25 7.67 1.73 4.67 0.47
RWMaOP2 4 10 6.01 7.27 5.98 6.87 9.90 6.82 7.54 5.68
RWMaOP3 7 3 0.70 2.43 0.57 1.93 9.23 1.80 4.55 0.31
RWMaOP4 5 6 0.69 1.86 0.56 2.03 7.05 1.98 3.67 0.29
RWMaOP5 4 4 0.64 1.60 0.51 1.79 6.66 1.60 3.05 0.29
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competitive edge in practical scenarios. The standout fea-
ture of MaOGOA is its overall excellence, primarily due 
to the IFM mechanism that adeptly balances convergence, 
uniformity and diversity in solution distribution.

Future research directions exploring more potent 
techniques for many-objective optimization challenges and 
developing finer strategies for these issues. Investigating the 
application of MaOGOA preselection strategy in different 
contexts, such as multi-objective neural architecture 
search within deep neural networks for medical image 
segmentation, also presents a promising avenue for further 
study.
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